- inversive plane
- мат.круговая плоскость
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Inversive plane — An inversive plane is a class of incidence structure in mathematics.It may be axiomatised by taking two classes, points and circles (or blocks ) with the properties * any three points lie on exactly one circle; * if P and Q are points and c a… … Wikipedia
Inversive geometry — Not to be confused with Inversive ring geometry. In geometry, inversive geometry is the study of those properties of figures that are preserved by a generalization of a type of transformation of the Euclidean plane, called inversion. These… … Wikipedia
Inversive ring geometry — In mathematics, inversive ring geometry is the extension to the context of associative rings, of the concepts of projective line, homogeneous coordinates, projective transformations, and cross ratio, concepts usually built upon rings that happen… … Wikipedia
Möbius plane — A Möbius plane or inversive plane is a particular kind of plane geometry, built upon some affine planes by adding one point, called the ideal point or point at infinity. In a Möbius plane straight lines are a special case of circles; they are the … Wikipedia
Generalised circle — A generalized circle, also referred to as a cline or circline , is a straight line or a circle. The concept is mainly used in inversive geometry, because straight lines and circles have very similar properties in that geometry and are best… … Wikipedia
List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… … Wikipedia
Ovoid (projective geometry) — In PG(3,q), with q a prime power greater than 2, an ovoid is a set of q2 + 1 points, no three of which collinear (the maximum size of such a set).[1] When q = 2 the largest set of non collinear points has size eight and is the complement of a… … Wikipedia
Peter Dembowski — (* 1. April 1928 in Berlin; † 28. Januar 1971 in Tübingen) war ein deutscher Mathematiker, der sich mit Kombinatorik beschäftigte. Peter Dembowski 1969 in Erlangen Leben und Wirken Peter Dembowski studierte 194 … Deutsch Wikipedia
Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… … Wikipedia
Problem of Apollonius — In Euclidean plane geometry, Apollonius problem is to construct circles that are tangent to three given circles in a plane (Figure 1); two circles are tangent if they touch at a single point. Apollonius of Perga (ca. 262 BC ndash; ca. 190 BC)… … Wikipedia
Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − … Wikipedia